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Despairing of prompt political response to
global warming, in August and September 2006,
Paul Crutzen (Nobel Prize in Chemistry) and
Tom Wigley (NCAR)
suggested that we consider temporary
geoengineering as an emergency response.
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This image of
ship tracks was
taken by the
Moderate
Resolution
Imaging
Spectro-
radiometer
(MODIS) on
NASA's Terra
satellite on May
11, 2005.
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Scheme by John Latham (University of Manchester,
NCAR) and Steve Salter (University of Edinburgh) to
increasing cloud albedo with by injecting more sea salt
cloud condensation nuclei into marine stratus clouds.
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IQ_]TGE RS Figure 4. Albedo spray vessels. They would sail back and forth square to the local prevailing wind. Flettner rotors with Thom
fences can give lift coefficients up to 20 and liff drag ratios of 35, much higher than cloth sails. Artwork by John MacNeill.
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Reasons geoengineering may be a bad idea

Climate system response

Regional climate change, including temperature and precipitation
Rapid warming when it stops
How rapidly could effects be stopped?
Continued ocean acidification
Ozone depletion
Enhanced acid precipitation
Whitening of the sky (but nice sunsets)
Less solar radiation for solar power, especially for those
requiring direct radiation
9. Effects on plants of changing the amount of solar radiation and
partitioning between direct and diffuse
10. Effects on cirrus clouds as aerosols fall into the troposphere
11. Environmental impacts of aerosol injection, including producing
and delivering aerosols

ONOOPL,WN -

Robock, Alan, 2008: 20 reasons why geoengineering may be a bad idea. Bu//.
| Atomic Scientists, 64, No. 2, 14-18, 59, d0i:10.2968/064002006. Robock
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We conducted the following geoengineering simulations
with the NASA GISS ModelE atmosphere-ocean general
circulation model run at 4° x 5° horizontal resolution
with 23 vertical levels up to 80 km, coupled to a 4° x
5° dynamic ocean with 13 vertical levels and an online
chemistry and transport module:

- 80-yr control run

- 40-yr anthropogenic forcing, IPCC A1B scenario: greenhouse gases
(CO,, CH,, N,O, O5) and tropospheric aerosols (sulfate, biogenic,
and soot), 3-member ensemble

- 40-yr IPCC A1B + Arctic lower stratospheric injection of 3 Mt
S0,/yr, 3-member ensemble

- 40-yr IPCC A1B + Tropical lower stratospheric injection of 5 Mt
S0O,/yr, 3-member ensemble

- 40-yr IPCC A1B + Tropical lower stratospheric injection of 10 Mt
SO,/yr

Robock, Alan, Luke Oman, and Georgiy Stenchikov, 2008: Regional climate
responses to geoengineering with fropical and Arctic SO, injections. J.
Geophys. Res., 113, D16101, doi:10.1029/2008J D010050
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JJA Change in Precip. (mm/day) (Tropical 5 Mt/yr—Control)
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Figure 3. (a) Observed precipitation anomalies (relative to 1950-2004 mean) in mm/day during October 1991
September 1992 over land. Warm colors indicate below normal precipitation. (b) As for Figure 3a but for the simulated
runoff [Qian et al., 2006] using a comprehensive land surface model forced with observed precipitation and other
% atmospheric forcing in mm/day. (¢) Palmer Drought Severity Index (PDSI, multiplied by 0.1) for October 1991 —September
1992 [Dai et al., 2004]. Warm colors indicate drying. Values less than —2 (0.2 on scale) indicate moderate drought, and
those less than —3 indicate severe drought.




GeoMIP

We are carrying out standard experiments with the new
GCMs being run as part of CMIP5 using identical global
warming and geoengineering scenarios, to see whether our
results are robust.

For example, how will the hydrological cycle respond to
stratospheric geoengineering? Will there be a significant
reduction of Asian monsoon precipitation? How will ozone and
UV change?

Kravitz, Ben, Alan Robock, Olivier Boucher, Hauke Schmidt, Karl Taylor, Georgiy
Stenchikov, and Michael Schulz, 2011: The Geoengineering Model Intercomparison
Project (6eoMIP). Atmospheric Science Letters, 12,162-167, doi:10.1002/asl.316.

GeoMIP is a CMIP Coordinated Experiment,
as part of the Climate Model

Intercomparison Project 5 (CMIP5). WC R P 8
RUTGE RS World Climate Research Pro; r_amme




First GeoMIP Workshop, Rutgers University, February 10-12, 2011

ers.edu/GeoMIP/events/rut

b YR I Ehe

Workshop was sponsored by the United Kingdom embassy in the United States.

Robock, Alan, Ben Kravitz, and Olivier Boucher, 2011: Standardizing Experiments in
m_] Geoengineering; GeoMIP Stratospheric Aerosol Geoengineering Workshop; New Robock
Brunswick, New Jersey, 10-12 February 2011, £0S5, 92, 197, d0i:10.1029/ 2011ES003424. EEtas



http://climate.envsci.rutgers.edu/GeoMIP/events/rutgersfeb2011.html

Second GeoMIP Workshop, University of Exeter, March 30-31, 2012

http://climate.envsci.rutgers.edu/GeoMIP/events/exetermarch2012.himl

Workshop was sponsored by the Integrated Assessment of Geoengineering Proposals project.

Kravitz, Ben, Alan Robock, and James Haywood, 2012: Progress in climate model
m_] simulations of geoengineering: 2nd GeoMIP Stratospheric Aerosol Geoengineering Robock

Workshop; Exeter, UK, 30-31 March 2012, £0S5, 93, 340, doi:10.1029/2012E5003871. ciences


http://climate.envsci.rutgers.edu/GeoMIP/events/exetermarch2012.html

Third GeoMIP Workshop, Institute for Advanced Sustainability
Studies, Potsdam, Germany, April 15-16, 2013

otsdamapril2013.html

Workshop was sponsored by TASS and NSF.

Kravitz, Ben, Alan Robock, and Peter Irvine, 2013: Robust results from climate model
IQ_] simulations of geoengineering: GeoMIP 2013; Potsdam, Germany, 15-16 April 2013. Eos, Robock
94,6292, doi:10.1002/2013E0330005. ciences



http://climate.envsci.rutgers.edu/GeoMIP/events/potsdamapril2013.html

Fourth GeoMIP Workshop
Paris, France, April 24-25, 2014
To be sponsored by NSF

Climate Engineering Conference 2014

August 18-21, Berlin, Germany
http://www.ce-conference.org/

14

y CEc

( &) Critical



ensembles:
AMIP & 20 C

Control,
AMIP,
&20C

E-driven
control & 20 C

E-driven
RCP8.5

1%/yr CO, (140 yrs)
abrupt 4XCO, (150 yrs)

All simulations are forced by
prescribed concentrations
except those “E-driven”
(i.e., emission-driven).

Coupled carbon-cycle
climate models only

Figure 3: Schematic summary of CMIP35 long-term experiments.

RUTGERS Taylor et al. (BAMS, 2012) Alan Robock
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4 x CO, increase

Control run net forcing

Radiative Forcing =

solar constant reduction

| |
Time (yr)=> 0 50

G1l. Instantaneously quadruple CO, concentrations (as measured from

preindustrial levels) while simultaneously reducing the solar constant
I to counteract this forcing. !



Control run

Radiative Forcing =

Time (yr)=2

50 70

G2: In combination with 1% CO, increase per year, gradually reduce
the solar constant to balance the changing radiative forcing. o

FRaNT

veparTmenT oT tnvironmenTtal Sciences



net forcing

Radiative Forcing =2

Time (yr)=> 2020 2070 2090

G3: In combination with RCP4.5 forcing, starting in 2020, gradual
ramp-up the amount of SO, or sulfate aerosol injected, with the
purpose of keeping global average temperature nearly constant.
Injection will be done at one point on the Equator or uniformly globally.




Radiative Forcing -

SO, injection

| | |
Time (yr)=> 2020 2070 2090

G4: (optional) In combination with RCP4.5 forcing, starting in 2020,
daily injections of a constant amount of SO, at a rate of 5 Tg SO, per
year at one point on the Equator through the lower stratosphere
(approximately 16-25 km in altitude).




Results from 61 experiments
by 12 climate models.

This is a very artificial experiment, with large
forcing so as to get large response.

Shown are averages from years 11-50 of the
simulations, balancing 4xCO, with solar radiation
reduction to achieve global average radiation balance.

Kravitz, Ben, et al., 2013: Climate model response from the
Geoengineering Model Intercomparison Project (GeoMIP).
J. Geophys. Res. Atmos., 118, 8320-8332, doi:10.1002/ jgrd.50646.
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Surface air temperature differences (&1-piControl),
averaged over years 11-50 of the simulation.

| | |
-3.2—-1.6-0.8-0.4-0.2-0.1 0.1 0.2 0.4 0.8 1.6 3.2
Temperature (K)

UTGE No stippling denotes agreement on the sign of the response in at least 75% of models. Alan Robock
- Department of Environmental Sciences




Results from 61 experiments
by 12 climate models

This is a very artificial experiment, with large
forcing so as to get large response.

Shown are averages from years 11-50 of the
simulations, balancing 4xCO, with solar radiation
reduction to achieve global average radiation balance.

Tilmes, Simone, et al., 2013: The hydrological impact of
geoengineering in the Geoengineering Model Intercomparison
Project (6eoMIP). J. Geophys. Res. Atmos., 118, 11,036-11,058,
doi:10.1002/ jgrd.50868.

KUTGERS Alan Robock
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Monsoon regions
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Experiment — 1850, Summer Monsoon
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Results from 62 experiments
by 12 climate models.

This is a 1%/year increase of CO,
balanced by a reduction of insolation.

Jones, Andy, et al., 2013: The impact of abrupt suspension of solar
radiation management (termination effect) in experiment G2 of
the Geoengineering Model Intercomparison Project (GeoMIP). J.
Geophys. Res. Atmos., 118, 9743-9752, doi:10.1002/ jgrd.50762.

KUTGE RS Alan Robock
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Rate of change of
temperature in first 10
years of 62 (K/decade)

Rate of change of
temperature in 70 years of
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Proposed GeoMIP Cloud Brightening Experiments

to be run for 50 years with solar geoengineering
followed by 20 years in which geoengineering is ceased

Experiment Description

Glocean-albedo Instantaneously quadruple the preindustrial CO,
concentration while simultaneously increasing
ocean albedo to counteract this forcing.

G4cdnc In combination with RCP4.5 forcing, starting in
2020, increase cloud droplet humber
concentration by 50% over the ocean.

G4sea-salt In combination with RCP4.5 forcing, starting in
2020, increase sea salt emissions in the marine
boundary layer between 30°S and 30°N by a
uniform amount, with an additional total flux of

sea salt of 100 Tg a.

Kravitz, Ben, et al. 2013: Sea spray geoengineering experiments in the Geoengineering
Model Intercomparison Project (6eoMIP): Experimental design and preliminary
results. J. Geophys. Res. Atmos., 118, do0i:10.1002/ jgrd.50856, in press.
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Baseline Run Geoengineering Run

0, (DU)

463
450
425
400
375
350
325
300
275
250
225
200
175

SH

Rasch et al.
(2008)

Ozone concentration
for coldest winters e
with and without 125
geoengineering -

WACCM3 model runs 2018 APR OS(DU;Q
by Tilmes et al. __... X0
(2008) e

with 2 Tg S/yr

NH

2021 APR

375
350
325
300
275
250
225
200
175
150

RUTGERS



Tropical SO, Injection 5 T
Total Annual SO, Deposition (] q m? g!
5 Tg ensemble (Years 10-19 Averoge)

Ranges of critical loading of pollutant
deposition (including sulfur) for various

sites in Europe [ Skeffington, 2006]
Reaion Critical Load
9 (mEq m-2 a-')
Coniferous forests in Southern
13-61
Sweden
Deciduous forests in Southern 15-72
Sweden
Varied sites in the UK 24-182
Aber in North Wales 32-134
Uhlirska in the Czech Republic 260-358 %% 75 0 10 0 0w w0 e
el = s T ey e )
Several varied sites in China oon - - L
63-880
(sulfur only)
Waterways in Sweden 1-44

-

While excess deposition will not
cause significant acidification,
sulfate can still damage human -

and ecosystem health. -

Kravitz, Ben, Alan Robock, Luke Oman, Georgiy Stenchikov, and
Allison B. Marquardt, 2009: Sulfuric acid deposition from
stratospheric geoengineering with sulfate aerosols. J. Geophys. SN
Res., 114, D14109, doi:10.1029/2009TD011918, corrected. S X

EQ

- f = not significant
: at 95% level
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UTGERS Figure from Symons (1888)
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"The Scream”

Edvard Munch

Painted in 1893
based on Munch's
memory of the
brilliant sunsets
following the
1883 Krakatau
eruption.

RUTGERS







Diffuse Radiation from
Pinatubo Makes a Whiter Sky

Photographs by Alan Robock

KUTGERS Alan Robock

Department of Environmental Sciences
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Broadband solar radiation, Mauna Loa Observatory (19°N)
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——— Geoengineering: Whiter skies?

Ben Kravitz,' Douglas G. MacMartin,” and Ken Caldeira’ )

Received 9 March 2012; revised 1 May 2012; accepted 2 May 2012; published 1 June 2012.

[1] One proposed side effect of geoengineering with

stratospheric sulfate aerosols 1s sky whitening during the day \

and afterglows near sunset, as i1s seen after large volcanic
eruptions. Sulfate aerosols in the stratosphere would increase
diffuse light received at the surface, but with a non-uniform
spectral distribution. We use a radiative transfer model to
calculate spectral irradiance for idealized size distributions of
sulfate aerosols. A 2% reduction in total irradiance, approx-
imately enough to offset anthropogenic warming for a dou-
bling of CO, concentrations, brightens the sky (increase in
diffuse light) by 3 to 5 times, depending on the aerosol size
distribution. The relative increase 1s less when optically thin
cirrus clouds are included in our simulations. Particles with
small radii have little influence on the shape of the spectra.
Particles of radius ~0.5 pum preferentially increase diffuse
irradiance in red wavelengths, whereas large particles
(~0.9 pm) preferentially increase diffuse irradiance in blue
wavelengths. Spectra show little change in dominant wave-
length, indicating little change in sky hue, but all particle
size distributions produce an increase in white light relative
to clear sky conditions. Diffuse sky spectra in our simula-
tions of geoengineering with stratospheric aerosols are sim-
ilar to those of average conditions in urban areas today.
Citation: Kravitz, B., D. G. MacMartin, and K. Caldeira (2012),
Geoengineering: Whiter skies?, Geophys. Res. Lett., 39, L11801,

doi:10.1029/2012GL051652. pnmental Sciences




Nevada Solar One
64 MW

Solar steam generators
requiring direct solar

Seville, Spain
Solar Tower
11 MW

http://www.electronichealing.co.uk/articles/solar_power_tower_spain.htm http://judykitsune.wordpress.com/2007/09/12/solar-seville/
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El Chichdn Pinatubo

Additional carbon sequestration after volcanic eruptions
because of the effects of diffuse radiation, but
certainly will impact natural and farmed vegetation.

nature Vol 45823 April 2009|doi:10.1038/nature07949
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Reasons geoengineering may be a bad idea

Climate system response

v'1. Regional climate change, including temperature and precipitation

v'2. Rapid warming when it stops

v'3. How rapidly could effects be stopped?

v'4. Continued ocean acidification

v'5. Ozone depletion

X6. Enhanced acid precipitation

v'7. Whitening of the sky (but nice sunsets)

v'8. Less solar radiation for solar power, especially for those requiring
direct radiation

v'9. Effects on plants of changing the amount of solar radiation and
partitioning between direct and diffuse

?10. Effects on cirrus clouds as aerosols fall into the troposphere

v'11. Environmental impacts of aerosol injection, including producing and
delivering aerosols

KUTGERS Alan Robock

Department of Environmental Sciences



Reasons geoengineering may be a bad idea
Unknowns

v'12. Human error
v'13. Unexpected consequences (How well can we predict the

expected effects of geoengineering? What about unforeseen
effects?)

Political, ethical and moral issues

v'14 . Schemes perceived to work will lessen the incentive o mitigate
greenhouse gas emissions
v'15.Use of the technology for military purposes. Are we developing
weapons?
v'16. Commercial control of technology
v'17 . Violates UN Convention on the Prohibition of Military or Any Other
Hostile Use of Environmental Modification Techniques
18. Could be tremendously expensive
19. Even if it works, whose hand will be on the thermostat? How could
the world agree on the optimal climate?
20. Who has the moral right to advertently modify the global climate?

RUTGERS Alan Robock

Department of Environmental Sciences



How could we actually get
the sulfate aerosols
intfo the stratosphere?

Artillery?
Aircraft?
Balloons?

Tower?

Starting from a mountain top
would make stratospheric
injection easier, say from the
Andes in the tropics, or from
Greenland in the Arctic.

Robock, Alan, Allison B. Marquardt, Ben Kravitz,
and Georgiy Stenchikov, 2009: The benefits,
risks, and costs of stratospheric geoengineering.
Geophys. Res. Lett., 36,L19703,
doi:10.1029/20096L039209.

KUTGERS Drawing by Brian West



KC-10 Extender
Ceiling: 12.73 km
Payload: 160 tons gas

Cost: $88,400,000
(1998 dollars)

http://www.af .mil/shared/media/factsheet/kc_10.jpg

With 3 flights/day,
operating 250 days/year

would need 9 planes
to deliver 1 Tg gas per year
to Arctic stratosphere.
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http://www.af .mil/shared/media/photodb/photos/030317-F-7203T-013.jpg
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Subaru (8-m mirror) Keck 1 and 2 (10-m mirrors)

Mauna Kea Observatory, Big Island, Hawaii




Conclusions
Of the 20 reasons why geoengineering may be a bad idea:
17v  2X 1?
Since then I have added 9 more reasons:

v'It might mess up Earth-based optical astronomy.
v'It would affect nighttime stargazing.
v'It would mess up satellite remote sensing of Earth.
v'It would make passive solar heating work less well.
v'"More sunburn from diffuse light and no sunscreen.
v'Effects on airplanes flying in stratosphere.
v'Effects on electrical properties of atmosphere.
v'Impacts on tropospheric chemistry.
v'Societal disruption, conflict between countries.

As of now, there are at least 26 reasons why
geoengineering is a bad idea.

RUTGE RS Alan Robock

Department of Environmental Sciences



Stratospheric Geoengineering

Benefits
1. Reduce surface air temperatures,
which could reduce or reverse
negative impacts of global warming,
including floods, droughts, stronger
storms, sea ice melting, land-based
ice sheet melting, and sea level rise

Increase plant productivity
Increase terrestrial CO, sink
Beautiful red and yellow sunsets
Unexpected benefits

2 e e

Each of these needs to be
quantified so that society can
make informed decisions.

Robock, Alan, 2008: 20 reasons why
geoengineering may be a bad idea. Bull. Atomic
Scientists, 64, No. 2, 14-18, 59,
doi:10.2968/064002006.

Robock, Alan, Allison B. Marquardt, Ben Kravitz,
and Georgiy Stenchikov, 2009: The benefits,
risks, and costs of stratospheric geoengineering.
Geophys. Res. Lett., 36, 19703,
doi:10.1029/20096L039209.

Robock, Alan, 2014: Stratospheric aerosol
geoengineering, Chapter 5 of special issue
"Geoengineering of the Climate System,” Issues
Env. Sci. Tech., 38, in press.
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Risks

Drought in Africa and Asia

Perturb ecology with more diffuse radiation
Ozone depletion

Continued ocean acidification

Impacts on tropospheric chemistry

Whiter skies

Less solar electricity generation

Degrade passive solar heating

Rapid warming if stopped

Cannot stop effects quickly

Human error

Unexpected consequences

Commercial control

Military use of technology

Societal disruption, conflict between countries
Conflicts with current treaties

Whose hand on the thermostat?

Effects on airplanes flying in stratosphere
Effects on electrical properties of atmosphere
Environmental impact of implementation
Degrade terrestrial optical astronomy
Affect stargazing

Affect satellite remote sensing

More sunburn

Moral hazard - the prospect of it working would
reduce drive for mitigation

Moral authority - do we have the right to do this?
Depar nvironmenta




Volcanic eruptions warn us
that stratospheric geoengineering could:

- Cool the surface, reducing ice melt and sea level rise,
produce pretty sunsets, and increase the CO, sink, but

- Reduce summer monsoon precipitation,

- Destroy ozone, allowing more harmful UV at the surface,
- Produce rapid warming when stopped,

- Make the sky white,

- Reduce solar power,

- Perturb the ecology with more diffuse radiation,

- Damage airplanes flying in the stratosphere,

- Degrade astronomical observations,

- Affect remote sensing, and

- Affect stargazing

KUTGERS Alan Robock

Department of Environmental Sciences



But does SRM Business as usual

0 make it more
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The United Nations
Framework Convention On Climate Change

1992

Signed by 194 countries and ratified by 188
(as of February 26, 2004)

Signed and ratified in 1992 by the United States

The ultimate objective of this Convention ... is to
achieve ... stabilization of greenhouse gas
concentrations in the atmosphere at a level that
would prevent dangerous anthropogenic interference
with the climate system.

KUTGERS Alan Robock

Department of Environmental Sciences



The UN Framework
Convention on Climate Change
thought of "dangerous
anthropogenic interference”
as due to the inadvertent
effects on climate from
anthropogenic greenhouse
gases .

We now must include
geoengineering in our pledge
to "prevent dangerous
anthropogenic interference
with the climate system.”

© New York Times, Henning Wagenbreth, Oct. 24, 2007

KUTGE RS Alan Robock

Department of Environmental Sciences



London Sunset After Krakatau
4:40 p.m., Nov. 26, 1883
Watercolor by William Ascroft
Figure from Symons (1888)
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