AGU: Geophysical Research Letters

Keywords

- · aerosols
- · climate
- · geoengineering
- · novel methods
- stratosphere

Index Terms

- Atmospheric Composition and Structure: Aerosols and particles
- Global Change: Atmosphere
- Atmospheric Processes: Climate change and variability

- Abstract
- Cited By (0)

Abstract

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L18805, 5 PP., 2010 doi:10.1029/2010GL043975

Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft

Jeffrey R. Pierce

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Debra K. Weisenstein

Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA

Patricia Heckendorn

Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Thomas Peter

Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

David W. Keith

Energy and Environmental Systems Group, University of Calgary, Calgary, Alberta, Canada

Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO_2 is limited because the slow conversion to H_2SO_4 tends to produce aerosol particles that are too large; SO_2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO_2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H_2SO_4 , a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO_2 injection. Relative to SO_2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO_2 .

Received 13 May 2010; accepted 28 July 2010; published 22 September 2010.

Citation: Pierce, J. R., D. K. Weisenstein, P. Heckendorn, T. Peter, and D. W. Keith (2010), Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft, *Geophys. Res. Lett.*, 37, L18805, doi:10.1029/2010GL043975.

Cited By

Please wait one moment ...

© 2011. American Geophysical Union. All Rights Reserved.