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Project Overview
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Goal: Improve estimates of the climate impact of aviation
through better understanding of physical processes

Detailed climate

simulations
(Jacobson, et al. 2011)

Large scale transport,
model microphysical
properties of subgrid
clouds, calculate
radiative effect of
distributions of contrails,
scales of years and
hundreds of kilometers

¢

Simple model of

contrail dynamics
(Naiman, et al. 2010)

Predict contrail volume
and coverage based on
parameters, individual
contrails, scales of hours
and kilometers
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¢

Detailed contrail

simulations
(Naiman, et al. 2011)

Resolve turbulence,
model water vapor
deposition, individual
contrails, scales of
seconds and meters
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Description of Simulations

* Incompressible 3D LES with Boussinesq approximation (Mahesh,
et al. 2004, Ham, et al. 2007)

e Lagrangian ice particles with water deposition and sublimation

e Twenty minutes simulated from time of emission
* Sensitivity cases vary:

— Aircraft type (3 cases)

— Vertical wind shear (2 cases)

— Ambient relative humidity (2 cases)

e Additional cases vary ice nuclei emission index and atmospheric
stability, validation cases include inertial/sedimenting particles
and resolution studies (not presented here)
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Description of Simulations

e Ambient conditions based on

cruising commercial jet
— 10.5 km altitude
— Stable temperature gradient

— Highly supersaturated w.r.t. ice
to produce persistent contrails

e 3D Initial Condition uses
idealized 2D vortex/jet field
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Vortex Wake

Exhaust Jets

T 1 1 1

plus 3D decaying isotropic

turbulence
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Description of Simulations

Time after aircraft passes (seconds)

10 100 1000

Water vapor from

Ambient conditions

combustion condenses onto determine particle
exhaust particles and freezes growth or evaporation :
. . Wind shear and other
Vortices entrain turbulence spread
exhaust and contrails
articles .
P Vortices interact and

Wing vorticity rolls descend
up into vortex pair Vortices disperse
1 10 100 1000
Spatial scale of exhaust plume (meters)
B
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Description of Simulations

Time after aircraft passes (seconds)
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Baseline Case — Crow Instability

Isosurfaces of vorticity magnitude (colored by streamwise vorticity) inside
transparent isosurfaces of the passive exhaustggalar

N
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Baseline Case — Ice Density Contours

Ilce Mass
Density
(kg/m~3)

8.5E-06
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* Primary wake is spread
horizontally after vortex
breakdown

* Primary and secondary wake
limited in vertical extent by
t=1200s stability
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Baseline Case — Optical Properties
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500 1000 1500

Z (m)

Periodic domain has
been copied in flight-
direction to better
depict contrail

During early dispersion
phase, spread controlled
by vortex breakdown
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Shear Case — Ice Density Contours
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Ilce Mass
Density
(kg/m~3)

8.5E-06
7.5E-06
6.5E-06
5.5E-06
4.5E-06
3.5E-06
2.5E-06
1.5E-06
S5E-07

 Moderate shear has negligible
effect on vortex descent and
breakdown

e Major effect is to dominate
horizontal spreading of contrail,

t=1200s producing thin and wide cloud
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X (m)
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Sensitivity Cases — Ice Statistics

5

e Aircraft type cases

B

— Different initial conditions varied wing
span, circulation strength, number of
engines, and emissions (scaled by
estimated fuel burn)

w

N

Mean Ice Radius (um)

— Medium 2-Engine

—tarmaree e |  Negligible differences in mean size of
Small 2-Engine . .
e ice particles produced

OI 1 L
0 200 400 600 800 1000 1200
Time (s)

T — * Integrated ice mass increased with
aircraft size

-

— Larger aircraft emit more ice nuclei and
water vapor

Ice Mass (kg/m)

— Larger vortex wakes entrain more
ambient water vapor
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Sensitivity Cases — Ice Statistics

5
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— Added moderate wind shear (5 m/s/km)
to baseline medium and large aircraft

Cases

e Slight differences in mean size of ice

particles produced

* Integrated ice mass increased with

shear

— Shear promotes entrainment of ambient

air in dispersion phase

— Increased mixing of humid air produces
larger particles, more ice mass

ACCRI Symposium, 22-24 February 2011
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Sensitivity Cases — Ice Statistics

5

e Ambient relative humidity cases

B

B — Reduced RHi from baseline 130% medium
3 .4l aircraft case
s,  Higher humidity produced larger ice
3 . particles
= 1} —RHi = 130%]
— RHi = 120% . .
—RHi = 110% e |Integrated ice mass also increased
O ; : : : I . . .
0 200 400 Tir?]go(s) 800 1000 1200 Wlth humldlty
i T — Entrainment of ambient water vapor
controls ice growth in persistent contrails
5} 1 ' — Higher humidity cases provide more
g water vapor for deposition to ice
=
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Contrail Optical Calculations or2e
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Contrail optical depth and width reported from fit of
Gaussian to flight-direction averaged optical depth
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Sensitivity Cases — Optical Properties

2

—e— Med. 2-Engine [ Aircraft type cases

—e—Large 4-Engine
Small 2-Engine||

e Larger aircraft produced optically

_ | thicker contrails
&j\‘\’*h ) — Higher number density

— Larger ice surface area

Optical Depth Fit Amplitude

— Both due to more emitted nuclei

0 200 400 600 800 1000 1200

e e Larger aircraft initially produced wider
700 - T " T .
contrails

6007 1
£ 500 ! — Width at early times controlled by
§4°° wingspan
F 300] — Width at late times controlled by
3 200| turbulence

—e—\led. 2-Engine

—e—Large 4-Enginef — Long term effect of aircraft size uncertain

Small 2-Engine .
e based on 20-minute results
Time (s)
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Sensitivity Cases — Optical Properties

Optical Depth Fit Amplitude

Contrail Width (m)

2
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- @ - Large 4-Engine Shear,

10001

200 400 600 800 1000 1200
Time (s)

- = @=Med. 2-Engine Shear P

| - @ = Large 4-Engine Shear| -*

—e—\led. 2-Engine

—e—Large 4-Engine P

* Vertical shear cases
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e Optical depth and contrail width
unaffected by shear during vortex

phase

e Both properties controlled by shear

during dispersion phase

— Kinematic effect of shear produces thin,

wide clouds

ACCRI Symposium, 22-24 February 2011
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Sensitivity Cases — Optical Properties

2

—e—RHi = 130% e Ambient relative humidity cases

—e—RHi = 120%
——Rui= 10w e Higher humidity produced optically
thicker contrails

— Larger ice surface area due to larger
particle sizes

-
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o
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Parameterized Model — LES Data Comparison

e SPM is the basic parameterized model
described in Naiman, et al. 2010

< 19 a * Basic SPM initial condition set to match
2 : F zero shear, medium aircraft result at t =
3 ---SPM 10 minutes
< —e—Med. 2-Engine
0.5r —e—Large 4-Engine
—Small 2-Engine
. | | | - * Appears to capture growth rate of area
0 W el P 2000 and width, but longer time LES needed
o for meaningful comparison
e * Does not account for variations in initial
& E ey . . .
= 400} condition with aircraft type
isoof i
)
o ---SPM
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Parameterized Model — LES Data Comparison
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Basic SPM initial condition set to
match zero shear, medium
aircraft result at t = 10 minutes

Similar to comparison with zero
shear cases

— Appears to capture growth rate of
area and width, but longer time LES
needed for meaningful comparison

— Does not account for variations in
initial condition with aircraft type
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Conclusions

e LES:

— Optical properties relevant to climate impact strongly sensitive
to vertical shear — mostly due to kinematic effect

— Sensitivity in optical depth to aircraft type and ambient
humidity

— Long term sensitivity in width to aircraft type uncertain
e Parameterized model:
— Captures growth rates of contrails

— Lacks sensitivity to aircraft type
— Longer time LES needed for comparison

% STANFORD

UNIVERSITY

PARTNER



22 of 24

Future Work
e LES:

— Incorporate ice habit parameterization to more realistically
model ice crystal growth

— Implement turbulence forcing for longer time horizon
simulations (2-3 hours)

 Improve SPM for global climate modeling

— Initial condition can be varied with aircraft type based on
vortex wake descent parameters

— Wake descent speed =1/ (2 1t b)

— Descent time characterized by vortex system lifetime based on
turbulence intensity (Crow and Bate, 1976)
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Case Summary
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Sensitivity | Initial Condition | Wind Shear ‘ RHi | El... | N,
A/CType  Medium 2-Engine 0 130% 10> 0.01st
A/CType  Llarge 4-Engine 0 130% 10> 0.01s*
A/CType  Small 2-Engine 0 130% 10 0.01s*t
Shear Medium 2-Engine 0.005 s 130% 10 0.01s*t
Shear Large 4-Engine 0.005 s 130% 10> 0.01s*
RHi Medium 2-Engine 0 120% 10 0.01s*t
RHi Medium 2-Engine 0 110% 10> 0.01st
El... Medium 2-Engine 0O 130% 104 0.01s*
El... Medium 2-Engine 0O 110% 10! 0.01s*
Stability Medium 2-Engine 0 130% 10> O
Stability Medium 2-Engine 0 130% 10> 0.015s*
S
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Grid Example

Simulation Time

Domain Size
Central Resolution

Number of Nodes

30-60 120-300
8x8x8 16x16x8

1/64 1/32

18x10° 20x10°

300-600
24x24x8

17x10°
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600-1200
32x32x8
1/16
14x106
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Contrails over Stanford, CA, 3 October 2009




