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Purpose of Study�
To examine the effects of aircraft emissions on climate, cirrus, and 
atmospheric composition with a global model that treats the exhaust 
plume from each aircraft flight worldwide at the subgrid scale and 
the microphysical evolution, spreading, and shearing of contrails 
within each plume. �



Approach�
GATOR-GCMOM was run using 2004 and 2006 emission data from 
Volpe, treating each of 35 million aircraft flights/yr as subgrid line-
plumes with elliptical  cross sections.  Global  resolution was 4ox5o. 
Subgrid plume shearing and spreading were calculated with a plume 
module; plume widths ~50 m-15 km.�
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Comparison of Subgrid Plume Model (SPM) to LES 
under moderate shear and turbulence conditions�

s = 0.003 s-1, Dh = 20.0 m2/s, Dv = 0.158 m2/s�

Analytical Solution�
Subgrid Plume Mode (SPM)�

Plume cross-section�

Naiman et al. (2009)�

Large Eddy Simulati(LES)�
Contours of exhaust 

concentration�

Dürbeck and Gerz (1996)�



One 1-hr Time Step of Line Contrail Coagulation 
Followed by Growth After Emissions�
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Discrete, size-resolved (16 bins) line contrails in each plume grew/
shrank  by  deposition/coagulation/sublimation  from  size-resolved 
aerosols. When contrails dissipated, their core aerosols were added 
to the grid scale to serve as CCN.�

Radiative  calculations  accounted  for  subgrid  contrails,  subgrid 
cumulus, and grid-scale cirrus/stratus clouds.�



Modeled vs. Measured Paired in Space Monthly T/Td �
Data from FSL (2008)�
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Despite coarse resolution, model captures data at exact location of data- Little �
numerical diffusion to stratosphere; dew point data uncertainty < 2.7 K upper trop�



Modeled vs. Measured Paired in Space Monthly O3�

Data from Logan et al. (1999)�

Model predicts the magnitude and altitude of the lower-
stratospheric ozone layer�
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Modeled vs. Measured Sea Ice Area�

Antarctic�

Model (at 4 x 5 degree resolution) predicts stable sea ice 
area after only two years of simulation�
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Modeled vs. Measured Annual Precip.�

Data from�
Huffman et al.�

(2007)�
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Despite 20 times lower resolution than data, model predicts features of 
observed precipitation and, without any flux adjustment, correctly does 
not produce a double ITCZ as nearly all models at coarse resolution do. �



Modeled vs. Measured Annual Lightning Flash Rate�

Data from 
NASA LIS/OTD 

Science Team�

Observed flash rate (flashes/km2/yr) (2.9)
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Model calculates lightning by accounting for size-resolved 
bounceoffs and charge separation in clouds. �



Modeled vs. MODIS Total Cloud 
Fraction April 2004�

Global-domain input occurs at edges           �

Peak fraction in both figures is 100%�
Model is 24-hr average for 2004; �
MODIS is average of two instant overpasses in 24 hours �
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Model predicted major observed regions of high cloud 
fraction: Rockies, northeast U.S.�



Modeled vs. Data Linear Contrail 
Cloud Fraction Jan 2004�

Peak fraction in both figures is 2%�
Model is 24-hr average for Jan 2004; �
Data are average of two instant overpasses in 24 hours �
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Model predicted peak magnitude and two major locations 
(eastern and west coast U.S. - Great Plains predictions low in 
Jan – possibly due to initial meteorological fields there.�



Modeled vs. Data Linear Contrail 
Cloud Fraction July 2004�

Peak fraction in both figures is 2%�
Model is 24-hr average for July 2004; �
Data are average of two instant overpasses in 24 hours �

Duda et al. (2005)�
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2004 Emissions and Modeled Contrail 
Cloud Fraction�

Vertical Profile�

a) � Contrail cloud fraction due to aircraft (+0.0012)
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Zonal-Altitude Plot of Line Contrail Water�

Subgrid  line  contrails  formed  at  altitudes  expected  by 
Schmidt-Appelman  criterion  but  calculated  here  from  size-
resolved microphysics and plume supersaturation �
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Effects of All Aircraft on Global Surface 
Temperatures Using ‘04 and ‘06 Emissions Data�

Left: Three sets of simulations under different conditions each 
bounded after ~5 years. Range of global warming from all is 

0.03-0.06 K. Right: The 2004 emission simulations show strong 
Arctic warming; the 2006 simulation with ~5 times lower BC 
shows less warming, but hi-lat warming still strong over Arctic�

Results preliminary�
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Effects of Aircraft on Surface Air Temperatures�

Aircraft caused�
~4-8% of surface warming�
~14-20% of Arctic warming�
Results strongly statistically �
Significant�
Results preliminary�
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2006em/51lay05luse �

h) � Surface air temperature (K) w-w/o aircraft (+0.053)
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Effects of Aircraft on Global Temperature 
Profiles�

Aircraft stabilized troposphere in all simulations�
� Reduced vertical transport/diffusion in all cases�
Arcraft caused 9-15% of upper-tropospheric warming�
Results preliminary. Please do not quote.� Data: Thorne et al. (2005)�
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Effects of Removing Removing 95% 2004 PM�

With 2004 emissions, removing 95% of PM (BC, POM, S(VI)) 
across the board reduced short-term Arctic warming. In this case, 
BC removal was 4 times greater than in the 2006 emission case, 

causing the elimination of polar warming�
Results preliminary. Please do not quote.�
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Effects of Converting BC to POM 2006 Em�

With 2006 emissions, converting emitted aircraft BC to POM 
eliminated Arctic warming similarly to eliminating 95% of all PM 
for 2004 emissions. This suggests BC from aircraft is main cause of 

short-term Arctic Warming from Aircraft, even with low BC.�
Results preliminary. Please do not quote.�
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Summary�
Simulations with 2004 and 2006 subgrid emissions suggest aircraft… �

Caused  a  global  linear  contrail  cloud  fraction  of  ~0.0011-0.0016 
(compared with 0.001-0.0014 in the literature)�

Increased decadal-scale global surface temperatures by 0.03 to 0.06 
K (4-8% of observed surface warming since 1850) (compared with 
3.6-8% of forcing due to aircraft from IPCC, 2007)�

Increased tropospheric stability,  reducing vertical  mixing and total 
global cloud fraction slightly although CF increased near contrails.�

Increased  Arctic  warming  by  ~0.35-0.5  K,  or  up  to  14-20%  of 
observed Arctic warming 1880-2008 of ~2.5 K, mostly due to BC.�

Results preliminary. Please do not cite or quote.�



Summary�
Simulations with 2004 and 2006 subgrid emissions suggest aircraft…�

Reducing BC emissions by a factor of 5 (e.g., using 2006 inventory 
versus 2004 inventory) reduced Arctic warming but still allowed 
substantial warming. �

Reducing 2004 BC by a  factor  of  20 turned Arctic  warming into 
cooling. �

Converting all 2006 BC to POM turned Arctic warming into cooling.�

� Decadal scale warming found from aircraft due mostly to BC and 
almost complete elimination of BC needed to eliminate warming.�

 Results preliminary. Please do not cite or quote.�


