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Purpose of Study

To examine the effects of aircraft emissions on climate, cirrus, and
atmospheric composition with a global model that treats the exhaust
plume from each aircraft flight worldwide at the subgrid scale and
the microphysical evolution, spreading, and shearing of contrails
within each plume.



Approach

GATOR-GCMOM was run using 2004 and 2006 emission data from
Volpe, treating each of 35 million aircraft flights/yr as subgrid line-
plumes with elliptical cross sections. Global resolution was 4°x5°.
Subgrid plume shearing and spreading were calculated with a plume
module; plume widths ~50 m-15 km.
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Comparison of Subgrid Plume Model (SPM) to LES

under moderate shear and turbulence conditions
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One 1-hr Time Step of Line Contrail Coagulation
Followed by Growth After Emissions
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Discrete, size-resolved (16 bins) line contrails in each plume grew/
shrank by deposition/coagulation/sublimation from size-resolved
aerosols. When contrails dissipated, their core aerosols were added
to the grid scale to serve as CCN.

Radiative calculations accounted for subgrid contrails, subgrid
cumulus, and grid-scale cirrus/stratus clouds.



Modeled vs. Measured Paired in Space Monthly T/T,

Global domain Data from FSL (2008)
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Despite coarse resolution, model captures data at exact location of data- Little
numerical diffusion to stratosphere; dew point data uncertainty < 2.7 K upper trop



Modeled vs. Measured Paired in Space Monthly O,

Data from Logan et al. (1999)
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Model predicts the magnitude and altitude of the lower-
stratospheric ozone layer



Modeled vs. Measured Sea Ice Area

Antarctic Arctic
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Model (at 4 x 5 degree resolution) predicts stable sea ice
area after only two years of simulation

Data from NASA Team (2009)



Modeled vs. Measured Annual Precip.
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Despite 20 times lower resolution than data, model predicts features of
observed precipitation and, without any flux adjustment, correctly does
not produce a double I'TCZ as nearly all models at coarse resolution do.



Modeled vs. Measured Annual Lightning Flash Rate

Modeled flash rate (ﬂashes/kmz/yr) 3.9
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Model calculates lightning by accounting for size-resolved
bounceoffs and charge separation in clouds.



Modeled vs. MODIS Total Cloud
Fraction April 2004

Peak fraction in both figures 1s 100%
Model 1s 24-hr average for 2004;

MODIS is average of two instant overpasses in 24 hours
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Global-domain input occurs at edges NASA (2008)

Model predicted major observed regions of high cloud
fraction: Rockies, northeast U.S.



Modeled vs. Data Linear Contrail
Cloud Fraction Jan 2004

Peak fraction in both figures 1s 2%
Model 1s 24-hr average for Jan 2004;

Data are average of two instant overpasses in 24 hours
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Model predicted peak magnitude and two major locations

(eastern and west coast U.S. - Great Plains predictions low in
Jan — possibly due to initial meteorological fields there.



Modeled vs. Data Linear Contrail
Cloud Fraction July 2004

Peak fraction in both figures 1s 2%
Model 1s 24-hr average for July 2004;

Data are average of two instant overpasses in 24 hours
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Global-domain input occurs at edges Duda et al. (2005)
Model predicted peak magnitude and locations (Great Plains,
central U.S) of observed fractions. Correctly predicted low
values Texas-Ala.)



2004 Emissions and Modeled Contrail
Cloud Fraction
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Zonal-Altitude Plot of Line Contrail Water

a) A Contrail ice+liquid (kg/kg) w-w/o aircraft
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Subgrid line contrails formed at altitudes expected by
Schmidt-Appelman criterion but calculated here from size-
resolved microphysics and plume supersaturation



Effects of All Aircraft on Global Surface
Temperatures Using ‘04 and ‘06 Emissions Data
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(a) Year from start of simulation (b) Latitude (degrees)
Left: Three sets of simulations under ditterent conditions each

bounded after ~5 years. Range of global warming from all is

0.03-0.06 K. Right: The 2004 emission simulations show strong
Arctic warming; the 2006 simulation with ~5 times lower BC

shows less warming, but hi-lat warming still strong over Arctic

Results preliminary



Effects of Aircraft on Surface Air Temperatures
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Aircraft caused

~4-8% of surface warming
~14-20% of Arctic warming
Results strongly statistically

Significant
Results preliminary
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Effects of Aircraft on Global Temperature
Profiles
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Aircratft stabilized troposphere 1n all simulations
—> Reduced vertical transport/diffusion in all cases
Arcraft caused 9-15% of upper-tropospheric warming

Results preliminary. Please do not quote. Data: Thorne et al. (2005)



Effects of Removing Removing 95% 2004 PM

-0.1 |
-0.15

5
P—

- — = ='04;51 lay;'05 Iu;5% PME

ll‘lll‘lll‘lll‘lll‘l

0451 lay;'05 lu;hi PM -

Cumulative A air temp. (K)
o
=
W

-0.2
0

2 4 6 8 10

(¢) Year from start of simulation

'04 em, 51 lay, '05 landuse, 11 y, hi PM
== =='04 em, 51 lay, '05 landuse, 11y, 5% PM

I

-80 -40 0 40 80
(d) Latitude (degrees)

With 2004 emissions, removing 95% of PM (BC, POM, S(VI))
across the board reduced short-term Arctic warming. In this case,
BC removal was 4 times greater than in the 2006 emission case,

causing the elimination of polar warming
Results preliminary. Please do not quote.



Effects of Converting BC to POM 2006 Em
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With 2006 emissions, converting emitted aircrait BC to POM
eliminated Arctic warming similarly to eliminating 95% of all PM
for 2004 emissions. This suggests BC from aircraft is main cause of

short-term Arctic Warming from Aircraft, even with low BC.
Results preliminary. Please do not quote.



Summary

Simulations with 2004 and 2006 subgrid emissions suggest aircratft. ..

Caused a global linear contrail cloud fraction of ~0.0011-0.0016
(compared with 0.001-0.0014 in the literature)

Increased decadal-scale global surface temperatures by 0.03 to 0.06

K (4-8% of observed surface warming since 1850) (compared with
3.6-8% of forcing due to aircraft from IPCC, 2007)

Increased tropospheric stability, reducing vertical mixing and total
global cloud fraction slightly although CF increased near contrails.

Increased Arctic warming by ~0.35-0.5 K, or up to 14-20% of
observed Arctic warming 1880-2008 of ~2.5 K, mostly due to BC.

Results preliminary. Please do not cite or quote.



Summary

Simulations with 2004 and 2006 subgrid emissions suggest aircratft. ..

Reducing BC emissions by a factor of 5 (e.g., using 2006 inventory
versus 2004 inventory) reduced Arctic warming but still allowed
substantial warming.

Reducing 2004 BC by a factor of 20 turned Arctic warming into
cooling.

Converting all 2006 BC to POM turned Arctic warming into cooling.

—> Decadal scale warming found from aircraft due mostly to BC and
almost complete elimination of BC needed to eliminate warming.

Results preliminary. Please do not cite or quote.



